首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   10篇
  国内免费   22篇
化学   125篇
晶体学   9篇
力学   518篇
综合类   1篇
数学   181篇
物理学   206篇
  2024年   1篇
  2023年   12篇
  2022年   20篇
  2021年   15篇
  2020年   56篇
  2019年   14篇
  2018年   15篇
  2017年   25篇
  2016年   37篇
  2015年   56篇
  2014年   68篇
  2013年   57篇
  2012年   28篇
  2011年   48篇
  2010年   34篇
  2009年   58篇
  2008年   40篇
  2007年   43篇
  2006年   41篇
  2005年   50篇
  2004年   46篇
  2003年   51篇
  2002年   12篇
  2001年   13篇
  2000年   16篇
  1999年   23篇
  1998年   28篇
  1997年   12篇
  1996年   6篇
  1995年   17篇
  1994年   14篇
  1993年   9篇
  1992年   3篇
  1991年   7篇
  1990年   11篇
  1989年   10篇
  1988年   9篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有1040条查询结果,搜索用时 15 毫秒
1.
2.
We derive a reduced-order model describing the inflation and deflation dynamics of a liquid-filled hyperelastic balloon, focusing on inviscid laminar flow and the extensional motion of the balloon. We initially study the flow and pressure fields for dictated motion of the solid, which throughout deflation are obtained by solving the potential problem. However, during inflation, flow separation creates a jet within the balloon, requiring a different approach. The analyses of both flow regimes lead to a simple piecewise model, describing the fluidic pressure during inflation and deflation, which is verified by finite element computations. We then use a variational approach to derive the equation describing the interaction between the extensional mode of the balloon and the entrapped fluid, yielding a nonlinear hybrid oscillator equation. Analytical and graphical investigations of the suggested model are presented, shedding light on its static and dynamic behaviour under different operating conditions. Our simplified model and its underlying assumptions are verified utilizing a fully coupled finite element scheme, showing excellent agreement.  相似文献   
3.
In this paper, we propose an uncertainty quantification analysis, which is the continuation of a recent work performed in a deterministic framework. The fluid–structure system under consideration is the one experimentally studied in the sixties by Abramson, Kana, and Lindholm from the Southwest Research Institute under NASA contract. This coupled system is constituted of a linear acoustic liquid contained in an elastic tank that undergoes finite dynamical displacements, inducing geometrical nonlinear effects in the structure. The liquid has a free surface on which sloshing and capillarity effects are taken into account. The problem is expressed in terms of the acoustic pressure field in the fluid, of the displacement field of the elastic structure, and of the normal elevation field of the free surface. The nonlinear reduced-order model constructed in the recent work evoked above is reused for implementing the nonparametric probabilistic approach of uncertainties. The objective of this paper is to present a sensitivity analysis of this coupled fluid–structure system with respect to uncertainties and to use a classical statistical inverse problem for carrying out the experimental identification of the hyperparameter of the stochastic model. The analysis show a significant sensitivity of the displacement of the structure, of the acoustic pressure in the liquid, and of the free-surface elevation to uncertainties in both linear and geometrically nonlinear simulations.  相似文献   
4.
Transformation hydrodynamics and the corresponding metamaterials have been proposed as a means to exclude the drag force acting on an object. Here, we report a strategy to deploy the hydrodynamic cloaks in a more practical manner by assembling different-shaped cloaking parts. Our strategy is to first model a square-shaped cloak and a carpet cloak and then combine them to conceal a more complex-shaped space in the three-dimensional hydrodynamic flow. With the derivation of transformation hydrodynamics, the coordinate transformations for each hydrodynamic cloaking are demonstrated with the calculated viscosity tensors. The pressure and velocity fields of the square, triangular (carpet), and exemplary three-dimensional house-shaped cloaks are numerically simulated, thus showing a cloaking effect and reduced drag. This study suggests an efficient way of cloaking complex architectures from fluid-dynamic forces.  相似文献   
5.
A theoretical model of an elastic panel in hypersonic flow is derived to be used for design and analysis. The nonlinear von Kármán plate equations are coupled with 1st order Piston Theory and linearized at the nonlinear steady-state deformation due to static pressure differential and thermal loads. Eigenvalue analysis is applied to determine the system’s stability, natural frequencies and mode shapes. Numerically time marching the equations provides transient response prediction which can be used to estimate limit cycle oscillation amplitude, frequency and time to onset. The model’s predictive capability is assessed by comparison to an experiment conducted at a free stream flow of Mach 6. Good agreement is shown between the theoretical and experimental natural frequencies and mode shapes of the fluid–structure system. Stability analysis is performed using linear and nonlinear methods to plot stability, flutter and buckling zones on a free stream static pressure vs temperature differential plane.  相似文献   
6.
Flow physics of transvalvular flows in the aorta with bioprosthetic valves are investigated using computational modelling. For the efficient simulations of flow-structure-interaction in transvalvular flows, a simplified, reduced degree of freedom valve model is employed with a sharp interface immersed boundary based incompressible flow solver. Simulations are performed for normal as well as abnormal valves with reduced leaflet motion that models the effect of early leaflet thrombosis. The structure of the aortic jet and the hemodynamic stresses on the aortic wall are analysed to understand the hemodynamic impacts and possible long-term clinical implications of sub-clinical, reduced leaflet motion. The simulation results have shown that the reduced leaflet motion tilts the direction of aortic jet and generates stronger flow separation and re-attachment on the aortic wall downstream from the reduced motion leaflets. The modified flow pattern increases the wall pressure fluctuation and average wall shear stress on the downstream aortic wall, and results in the asymmetric oscillatory shear index distributions, which may have long-term clinical implications such as aortic wall damage and remodelling.  相似文献   
7.
In order to investigate the effect of density ratio of fluid and solid on the convergence behavior of partitioned FSI algorithm, three strong-coupling partitioned algorithms (fixed-point method with a constant under-relaxation parameter, Aitken’s method and Quasi-Newton inverse least squares (QN-ILS) method) have been considered in the context of finite element method. We have employed the incompressible Navier–Stokes equations for a Newtonian fluid domain and the total Lagrangian formulation for a non-linear motion of solid domain. Linear-elastic (hyper-elastic) model has been employed for solid material with small (large) deformation. A pulsatile inlet-flow interacting with a 2D circular channel of linear-elastic material and a pressure wave propagation in a 3D flexible vessel have been simulated. Both linear-elastic and hyper-elastic (Mooney–Rivlin) models have been adopted for the 3D flexible vessel. From the present numerical experiments, we have found that QN-ILS outperforms the others leading to a robust convergence regardless of the density ratio for both linear-elastic and hyper-elastic models. On the other hand, the performances of the fixed-point method with a constant under-relaxation parameter and the Aitken’s method depend strongly on the density ratio, relaxation parameter selected for coupling iteration, and degree of deformation. Although the QN-ILS of this work is still slower than a monolithic method for serial computation, it has an advantage of easier parallelization due to the modularity of the partitioned FSI algorithm.  相似文献   
8.
The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply.  相似文献   
9.
The Shallow–Water Equations (SWEs), also referred to as the de Saint-Venant equations, constitute the current governing mathematical tool for free-surface water flows. These include, e.g., flood flows in rivers and in urban zones, flows across hydraulic structures as dams or wastewater facilities, flows in the environmental fields, glaciology, or meteorology. Despite this attractiveness, the system of two partial differential equations has an exact mathematical solution only for a limited number of problems of practical relevance.This historical work on the SWEs is based on a correspondence between two 19th-century scientists, de Saint-Venant and Boussinesq. Their well-known papers are thus commented from the point of development of their theory; the input of both scientists is evidenced by their writings, and comments of both to each other that led to what is commonly known as the SWEs. Given the age difference of the two of 45 years, the experienced engineer de Saint-Venant, and the mathematician Boussinesq, two eminent researchers, met to discuss not only problems in hydraulics, but in physics generally. In addition, their correspondence embraced also questions in ethics, religion, history of sciences, and personal news.The results of the SWEs cease to hold if streamline curvature effects dominate; this includes breaking waves, solitary and cnoidal waves, or non-linear waves in general. In most other cases, however, the SWEs perfectly apply to typical flows in engineering practice; they are considered the fundamental system of equations describing open channel flows. This work thus provides a background to its birth, including lots of comments as to its improvement, physical meanings, methods of solution, and a discussion of the results. This paper also deals with the steady flow equations, gives a short account on the main persons mentioned in the Correspondence, and provides a summary of further developments of the SWEs until 1920.  相似文献   
10.
该文在M/M/c排队驱动系统中加入工作休假策略,研究了单重工作休假多服务台排队驱动的流体模型.利用拟生灭过程和矩阵几何解法得到驱动系统稳态队长分布.构建净输入率结构,导出流体模型的稳态联合分布函数满足的的矩阵微分方程组,进而利用Laplace-Stieltjes变换(LST)方法得到稳态下缓冲器库存量的空库概率及均值表达式.最后,给出模型在多信道无线Mesh网下的应用,通过数值例子展示参数变化对系统性能指标的影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号